## ST. JOSEPH'S COLLEGE OF COMMERCE

# (AUTONOMOUS)



## LESSON PLAN

### 2017-2018 EVEN SEMESTER

## **BACHELOR OF COMMERCE (TT)**

### **OPERATIONS RESEARCH**

**PREPARED BY:** 

**MS. SUGANTHI PAIS** 

ST.JOSEPH'S COLLEGE OF COMMERCE (AUTONOMOUS)

# DEPARTMENT OF MANAGEMENT TEACHING LESSON PLAN B.Com 6<sup>TH</sup> Semester OPERATIONS RESEARCH

### **OBJECTIVE:**

- To provide a good foundation in the basics of Operation Research and appreciation of its potential application in the travel industry for decision making
- To enable student to grasp the importance of conversion of business problems into mathematical problems and its application in tourism business.

| UNIT/<br>SESSION/<br>HOURS<br>(TIME<br>REQUIRED)                  | TOPICS FOR STUDENT<br>PREPARATION<br>(INPUT)                                                             | PROCEDURE<br>(PROCESS)                                                                                           | LEARNING OUTCOME<br>(OUTPUT)                                                                                                     | ASSESSMENT                                  |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Module – 1 :<br>Introduction<br>to OR<br>4 hours                  | Definitions-Scope-OR<br>models-Nature-<br>limitations-<br>Applications                                   | <ul> <li>Online Videos</li> <li>Lecture with the help of power Point presentation</li> <li>Discussion</li> </ul> | <ul> <li>To understand the importance of:</li> <li>Origin of OR and its functions.</li> <li>Scope and decision making</li> </ul> | Evaluation<br>through<br>MCQs               |
| Module-2:<br>Introduction<br>to Linear<br>Programming<br>12 Hours | Concepts-construction<br>of LP model-Problems<br>on formulation-<br>graphical method-<br>simple problems | <ul> <li>Lecture</li> <li>Case Study</li> <li>Discussion</li> <li>Problem solving</li> </ul>                     | To understand the<br>significance of LPP to the<br>firm and to formulate<br>business problems and<br>model making:               | Evaluation<br>through tests<br>and MS excel |
| Module-3:<br>Transportatio<br>n Problem<br>16 Hours               | Introduction-methods<br>of IBFS and testing for<br>optimality-MODI<br>method                             | <ul> <li>Lecture</li> <li>Case Study</li> <li>Discussion</li> <li>Problem solving</li> </ul>                     | To understand the<br>significance and<br>application of<br>transportation model in<br>different areas of business                | Evaluation<br>through tests<br>and MS Excel |
| Module-4:<br>Assignment<br>Problem<br>10 Hours                    | Introduction-<br>Methods-<br>(enumeration-Simplex<br>& transportation-<br>theory)-Hungarian<br>Method    | <ul> <li>Lecture</li> <li>Discussion</li> <li>Case study</li> <li>Problem solving</li> </ul>                     | To understand the<br>significance and<br>application of assignment<br>model in business.                                         | Evaluation<br>through tests<br>and MS Excel |
| Module-5:                                                         | Introduction-service                                                                                     | Lecture                                                                                                          | To understand the                                                                                                                | Evaluation                                  |

# **LESSON PLAN**

| Queuing<br>Theory<br>6 Hours        | system-components<br>of queing system-<br>queing models-<br>problems on single-<br>server queing model<br>only                             | • | Discussion<br>Problem solving<br>Case Study | significance and<br>application of queuing<br>system and models.                                                        | through<br>MCQs, group<br>activity and<br>tests |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Module-7:<br>Simulation<br>12 Hours | basic concepts-steps<br>of simulation process<br>basic probability<br>conceptrandom<br>numbers-problems<br>using Monte Carlo<br>Techniques | • | Lecture<br>Discussion<br>Problem solving    | To understand the use of<br>simulation and its process.<br>To understand probability<br>concepts and it<br>application. | Evaluation<br>through tests                     |

### **UNIT WISE BREAK UP**

#### **LECTURE HOURS: 60**

### OBJECTIVE:

- To provide a good foundation in the basics of Operation Research and appreciation of its potential application in the travel industry for decision making
- To enable student to grasp the importance of conversion of business problems into mathematical problems and its application in tourism business.

| Module<br>Number | Торіс                                                                     | No. of<br>Lecture<br>Hours | Pre- class<br>activity                                                     | Pedagogy<br>(in class)                | Out of class<br>assignment                             |
|------------------|---------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------|
| Module 1 :       | Introduction to OR                                                        | 4                          |                                                                            |                                       |                                                        |
| 1.               | <ul> <li>Definition and<br/>evaluation of OR</li> </ul>                   | 2                          |                                                                            | Lecture and Discussion                | To make short notes on the features                    |
| 2.               | Characteristics and<br>Scope of OR –<br>Management<br>Applications of OR. | 2                          | To go online<br>and view<br>videos on<br>scope of<br>operation<br>research | Lecture ,<br>Discussion<br>And video  | ,scope applications<br>of OR                           |
| Module 2         | Introduction to Linear<br>Programming                                     | 12                         |                                                                            |                                       |                                                        |
| 1                | Introduction and areas<br>of application of LPP                           | 2                          | To read about<br>problems on<br>linear<br>programming                      | Lecture and<br>Illustrations          | To write about the meaning definition and scope of LPP |
| 2                | Formulation of LPP                                                        | 4                          | To learn the<br>steps in<br>formulating an<br>LPP                          | Illustrations<br>and<br>Work<br>sheet | Short case studies                                     |
| 3                | Graphical method of solving LPP                                           | 6                          | To plot single<br>line graphs                                              | Illustrations<br>and<br>Work sheet    | LPP Graph problems                                     |
| Module 3         | Transportation                                                            | 16                         |                                                                            |                                       |                                                        |

| 1.       | Definition of the<br>Transportation model<br>– the Transportation<br>Method- Linear<br>Programming<br>Formulation of the<br>Transportation<br>Problem<br>Transshipment model<br>and Methods of<br>calculating IBFS | 2  | To read and<br>write about<br>transportation<br>model in OR       | Lecture<br>through<br>power point<br>presentation | Collection of actual<br>transportation data<br>and a study on IBFS |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|
| 2.       | North west corner rule                                                                                                                                                                                             | 2  | To write about<br>transshipment<br>model                          | Lecture and<br>Problems                           | Problems on NWCR                                                   |
| 3.       | Least cost method                                                                                                                                                                                                  | 3  | To study the<br>different<br>methods of<br>IBFS                   | Lecture and<br>Problems                           | Problems on LCM                                                    |
| 4.       | Vogel's approximation<br>method                                                                                                                                                                                    | 4  | To conduct a<br>comparative<br>study on the<br>methods of<br>IBFS | Lecture and<br>Problems                           | Problems on VAM                                                    |
| 5.       | Testing for optimality<br>and improvement of<br>solution                                                                                                                                                           | 5  | To read about<br>MODI method                                      | Lecture and<br>Problems                           | Problems on MODI<br>method                                         |
| Module 4 | Assignment Problems                                                                                                                                                                                                | 10 |                                                                   |                                                   |                                                                    |
| 1.       | Introduction –<br>Mathematical<br>Statement of the<br>problem                                                                                                                                                      | 2  | Nature and<br>scope of<br>assignment                              | Lecture                                           | Problems on assignment                                             |
| 2.       | SolutionMethods of<br>Assignment Problem<br>– Enumeration –<br>Transportation &<br>Hungarian Method-                                                                                                               | 4  |                                                                   | Lecture and<br>Problems                           | Problems on<br>assignment                                          |
| 3.       | Maximization in an Assignment problems                                                                                                                                                                             | 2  | Areas of application                                              | Lecture and<br>Problems                           | Problems on assignment                                             |
| 4.       | Special cases in an<br>Assignment problems                                                                                                                                                                         | 2  | Problems on assignment                                            | Lecture and<br>Problems/cas<br>e study            | Problems on assignment                                             |
| Module 5 | Queuing Theory                                                                                                                                                                                                     | 6  |                                                                   |                                                   |                                                                    |
| 1.       | Introduction –<br>feautres and<br>concepts- queing<br>models                                                                                                                                                       | 2  | To read and<br>write about<br>Queuing<br>Theory                   | Presentation                                      | To make notes on<br>the various concepts<br>covered.               |

| 2.       | Problems on single-<br>server queuing model                                               | 4  |                                                        | Problems                | Problems on single-<br>server queuing<br>model |
|----------|-------------------------------------------------------------------------------------------|----|--------------------------------------------------------|-------------------------|------------------------------------------------|
| Module 6 | Simulation                                                                                | 12 |                                                        |                         |                                                |
| 1        | Basic concepts-<br>characteristices- steps<br>in simulation process                       | 4  | To read and<br>understand the<br>concept<br>simulation | Lecture and<br>PPT      | Notes on Simulation                            |
| 2        | Basics probablity<br>concept-random<br>numbers-problems<br>using Monte Carlo<br>Technique | 8  | Concept on probability                                 | Lecture and<br>Problems | Problems using<br>Monte Carlo<br>Technique     |

#### **BOOKS FOR REFERENCE:**

- 1. Anderson Sweeney Williams: An Introduction to Management Science Quantitative Approaches to Decision, Thomson.
- 2. Chacko, George K: Applied Operations Research/Systems Analysis in Hierarchical Decision Making, North Holland Publishing Co.
- 3. Taha, Hamdy A: Operations Research, Prentice Hall, India.
- 4. Hiller/Lieberman: Introduction to Operations Research, Tata McGraw Hill.
- 5. Sharma S D: Operations Research, Kedarnath Ramnath & Co.